| Authors | Smirnov Yuriy Gennad'evich, Doctor of physical and mathematica sciences, professor, head of sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), mmm@pnzgu.ruMoskaleva Marina Aleksandrovna, Researcher, the research center “Supercomputer modeling in electrodynamics”, Penza State University (40 Krasnaya street, Penza, Russia), m.a.moskaleva1@gmail.com
 | 
        
            | Abstract | Background. The determination of characteristics of a material sample placed in a waveguide by measuring the electromagnetic field is an actual problem in radio electronics. The objective of the work is to study a mathematical model of electromagnetic waves scattering on volumetric heterogeneous bodies in a rectangular waveguide.Materials and methods. The direct problem of electromagnetic waves on a heterogeneous body placed in a waveguide is considered. This problem is reduced to solving the integro-differential equation. To solve the resulting equation, the projection method of Galerkin is used. The inverse problem of permittivity determination of a heterogeneous body in a waveguide is formulated. The inverse problem is reduced to solving an integral equation of the first kind and recalculating the function of permittivity through the polarization current.
 Results. The two-sweep method for heterogeneous body’s permittivity determination in a waveguide is constructed. Numerical results of the solution of the inverse problem of the diffraction recovery of body’s permittivity in a rectangular waveguide are obtained.
 Conclusions. The results can be applied in practice, for example, in studying of various nanocomposite materials and complex nanostructures by the nondestructive method of testing.
 | 
        
            | Key words | boundary value problem, inverse problem of diffraction, permittivity tensor, tensor Green's function, integrodifferential equation | 
        
            | References | 1. Medvedik M. Yu., Smirnov Yu. G. Obratnye zadachi vosstanovleniya dielektricheskoy pronitsaemosti neodnorodnogo tela v volnovode [Inverse problems of heterogeneous body’s dielectric permittivity recovery in a waveguide]. Penza: Izd-vo PGU, 2014, 76p.2. Medvedik M. Yu., Smirnov Yu. G. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2008, no. 2, pp. 2–14.
 3. Medvedik M. Yu., Smirnov Yu. G. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2009, no. 4, pp. 55–71.
 4. Medvedik M. Yu., Smirnov Yu. G. Radiotekhnika i elektronika [Radio engineering and electronics]. 2011, vol. 56, no. 8, pp. 940–945.
 5. Smirnov Yu. G., Tsupak A. A. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2004, vol. 44, no. 12, pp. 2252–2267.
 6. Smirnov Yu. G. Matematicheskie metody issledovaniya zadach elektrodinamiki [Mathematical methods of researching problems of electrodynamics]. Penza: Inf.-izd. tsentr PGU, 2009, 268 p.
 7. Il'inskiy A. S., Smirnov Yu. G. Difraktsiya elektromagnitnykh voln na provodyashchikh tonkikh ekranakh [Diffraction of electromagnetic waves on conducting thin screens]. Moscow: IPRZhR, 1996, 176 p.
 8. Smirnov Yu. G., Medvedik M. Yu., Vasyunin D. I. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2009, no. 3, pp. 71–87.
 
 |